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1. Introduction 

 Efforts to promote evidence-based practices in decision-making assume that scientific 

findings are of sufficient validity to warrant its use. Replication has long been a cornerstone for 

establishing trustworthy scientific results. At its core is the belief that scientific knowledge 

should not be based on chance occurrences. Rather, it is established through systematic and 

transparent methods, results that can be independently replicated, and findings that are 

generalizable to at least some target population of interest (Bollen, Cacioppo, Kaplan, Krosnick, 

& Olds, 2015).  

 Given the central role of replication in the accumulation of scientific knowledge, 

researchers have evaluated the replicability of seemingly well-established findings. Results from 

these efforts have not been promising. The Open Science Collaboration (OSC) replicated 100 

experimental and correlational studies published in high impact psychology journals. The 

replication studies were conducted by independent researchers who collected data from new 

samples, using study materials from the original research protocol (“Estimating the 

reproducibility of psychological science,” 2015). Overall, the OSC found that only 36% of these 

efforts produced results with the same statistical significance pattern as the original study, and 

47% of the original effects fell within the 95% confidence interval of the replicated results. The 

findings prompted the OSC authors to conclude that replication rates in psychology were low, 

but not inconsistent with what has been found in other domains of science. Ioannidis (2005) 

suggests that most findings published in the biomedical sciences were likely false. His review of 

more than 1,000 medical publications found that only 44% of replication efforts produced results 

that corresponded with the original findings (Ioannidis, 2008). Combined, these results 

contribute to a growing sense of a "replication crisis" occurring in multiple domains of science, 
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including marketing (Madden, Easley, & Dunn, 1995), economics (Dewald & Anderson, 1986; 

Duvendack, Palmer-Jones, Reed, 2017), education (Makel & Plucker, 2014), and prevention 

science (Valentine et al., 2011).  

 Despite consensus on the need to promote replication efforts, there remains 

considerable disagreement about what constitutes as replication, how a replication study should 

be implemented, and how results from these studies should be interpreted. Gilbert, King, 

Pettigrew, and Wilson (2016) argue that OSC's conclusions about replication rates in psychology 

were overly pessimistic. They showed that besides sampling error and weak statistical power in 

the original studies, the replication efforts themselves may be biased. For example, although the 

OSC attempted to replicate the same research procedures used in the original study, only 69% of 

their study protocols were endorsed by the original authors – suggesting substantial deviations in 

study factors across the original and replication efforts. In a reanalysis of the OSC data, Van 

Bavel, Mende-Siedlecki, Brady, and Reinero (2016) write that even small differences in 

contextual factors across studies can produce differences in the original and replication results.  

 But what conditions are needed for an original and replication study to produce 

identical treatment effects (within the limits of sampling error)? Currently, the social and health 

sciences lack consensus on what replication is, and what it is meant to demonstrate (Aos et al., 

2011). We address these challenges by presenting replication as a formal research design using a 

nonparametric structural model (Pearl, 2009) and potential outcomes (Rubin, 1974). We define 

replication as a research design that tests whether two or more studies produce the same causal 

effect (within the limits of sampling error). Our approach focuses on the replication of causal 

treatment effects because researchers and policymakers are often interested in robust, scientific 
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results for programmatic and policy decision-making. However, the method extends easily to the 

replication of correlational and descriptive results as well, albeit with weaker assumptions.   

 This paper demonstrates the multiple benefits of conceptualizing replication as a 

research design. First, our approach draws upon an already well-established model for 

understanding research designs and their assumptions: the potential outcomes model. We will 

show that many research design features and empirical diagnostics used to improve causal 

inferences can be extended to the replication design context. Second, our definition of replication 

is applicable across diverse fields of study because it focuses on causal estimands of interest and 

assumptions, not on study procedures and operations that may vary with different outcome 

measures, units, treatments, and settings. Third, knowledge of research design assumptions can 

provide investigators with better guidance on the planning of replication studies. That is, 

researchers may incorporate prospective research design features and empirical diagnostic 

measures for addressing and/or probing replication assumptions. Replication design assumptions 

will also help readers evaluate when potential sources of biases may produce results that do not 

replicate. Finally, results from replication studies with well-defined treatment conditions and 

outcomes, clear causal quantities for well-specified target populations, and rigorous research 

designs, estimation, and reporting practices will improve the quality of meta-analytic results 

when they are synthesized across multiple studies.   

2. Background 

 Given the importance of results replication in the accumulation of scientific knowledge, 

it is surprising that replication efforts are so rare. Makel and colleagues reviewed a history of the 

top 100 journals and found that only 0.13% of studies in education (Makel & Plucker, 2014) and 

1.07% of studies in psychology (Makel, Plucker, & Hegarty, 2012) were replication efforts.  
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 Technical advisory panels for the Institute of Education Sciences (IES) and the 

National Science Foundation (NSF) examined reasons for why there are so few replication 

efforts. One issue is that replication remains undervalued in science. Researchers find it more 

difficult to raise funds to support replication studies (Asendorpf et al., 2013), to publish results 

from replication efforts (Nosek, Spies, & Motyl, 2012; Valentine et al., 2011), and to receive 

promotion and tenure for their replication studies (Asendorpf et al., 2013). A recent review of 

1,151 psychology journals found that only 3% indicated replication as an interest area, but 33% 

of journals emphasized the need for originality in its criteria for publication (Martin & Clarke, 

2017). In acknowledging cultural barriers in the scientific community toward replication efforts, 

NIH Director Francis Collins and Deputy Director Lawrence Tabak wrote in Nature that 

“science has long been regarded as ‘self-correcting,’ … Over the long term, that principle 

remains true. In the shorter term, however, the checks and balances that once ensured scientific 

fidelity has been hobbled. This has compromised the ability of today’s researchers to reproduce 

others’ findings” (2014, pg. 612).  

 Compounding the cultural stigma related to “replication” is the issue that replication is 

not well established nor understood as a research methodology. An IES Technical Working 

Group (TWG) on “What Comes After an Efficacy Study?” observed that “The topic of 

replication in the education sciences is complex, in part because there are different definitions of 

replication studies” (2016, pgs. 9-10). This is despite efforts already made by the NSF 

Subcommittee on Replicability in Sciences in 2015 to institute a shared understanding of 

common terminology in the field. For example, the subcommittee defined replicability as, "the 

ability of a researcher to duplicate the results of a prior study if the same procedures are followed 

but new data are collected" (Bollen et al., 2015, pg. 4) and reproducibility as "the ability ... to 
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duplicate the results ... using the same materials and procedures" (Bollen et al., 2015, pg. 3). The 

difference here is that replication requires the collection and analysis of new data, whereas 

reproducibility involves reanalysis of original data and code files. However, these definitions are 

not yet widely adopted, even among federal agencies. The Director and Deputy Director of 

National Institutes of Health describe reproducibility more broadly to include "the design, data 

collection, and analysis of new data to replicate results from an original study" (Collins & Tabak, 

2014). The OSC calls its own independent replications an effort to estimate the reproducibility 

rate in psychology.  

 Over the years, researchers have sought to clarify what is meant by replication by 

proposing new topographies and procedures for the method. The most common distinctions 

focus on the purpose of the replication effort. Schmidt (2009) differentiates between direct and 

conceptual replications. Generally, direct or statistical replications (Valentine et al., 2011) assess 

whether corresponding results are replicated within the bounds of sampling error. Here, the 

researcher attempts to repeat the exact same research and treatment protocols as the original 

study, but draws a new sample of participants. The goal of conceptual replications, however, is 

to assess whether the same result is obtained despite heterogeneity across units, time, outcomes, 

setting, treatment variants, and methods. Conceptual replications are informal, with multiple 

independent researchers asking broadly defined research questions such as, "What is the effect of 

grade retention on students' long-term achievement and behavioral outcomes?" or "What is the 

effect of pre-kindergarten on students' achievement scores?" These questions may be evaluated 

across multiple states and time periods, and often involve somewhat different target populations, 

treatment implementations, and outcomes.  
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 Others have defined replication based on procedural characteristics that are varied 

across original and replication studies. Lykken (1968) highlights differences between 

replications that are conducted by (or in collaboration with) the original investigators, and those 

that are conducted by independent researchers. The latter has the benefit of reducing the threat of 

experimenter bias and error, but may be limited due to inadvertent deviations in the study 

protocol. Duncan, Engel, Classens, and Dowsett (2014) suggest procedures for conducting 

"within-study replications." Here, the original authors present replication results within the same 

paper, report, or data – where, the replicated results are obtained by systematically varying the 

subgroups under investigation, estimation methods for producing results, and data sources for 

conducting the analysis. In the social science literature, these procedures are often described as 

efforts to assess the "robustness" of results across variations in study characteristics and samples.  

 Despite repeated efforts to catalog different types of replication approaches, the most 

basic issue of what a replication is and what it is meant to demonstrate remains not well 

understood. This is because prior definitions of replication focus on procedures for conducting 

this type of study. A limitation of procedure-based definitions of replication is that they do not 

generalize well to different fields of study, or even within the same field but with very different 

types of treatments, units, contexts, and outcomes. In fact, the IES TWG report noted the 

methodological confusion is so great that “even co-investigators sometimes disagree about 

whether their study is new or a replication” (Building Evidence: What Comes After an Efficacy 

Study?, 2016, pg. 10). 

 Our approach differs from prior conceptualizations of replication in that it focuses on 

the stringent assumptions required for the replication of the same causal estimand/effect. 

Although our approach does not identify specific procedures needed for replication, addressing 
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replication assumptions does have practical implications for how the approach should be 

conducted in field settings. As we will see, replication assumptions provide a framework for 

deriving replication research design variants that allow researchers to evaluate the robustness of 

results, and to systematically identify sources of treatment effect heterogeneity.  

3. Replication as a Research Design 

 In this section we describe components for a replication design with two study arms, an 

"original" and a "replication" study, and two treatment conditions – the treatment of interest and 

a control condition. Although our discussion focuses on replication designs with two studies and 

two treatment conditions, our conceptualization extends to study designs with more than one 

replication effort and treatment condition. Figure 1 provides a graphical depiction of the 

replication design with two study arms. Within each study arm, participants are assigned – or 

select into – a treatment or control condition. Treatment effects are compared across both study 

arms to determine whether results are sufficiently “close” (e.g. in terms of direction, size, 

statistical significance patterns). The goal of the study design is to evaluate whether causal 

effects replicate across both study arms. Below, we describe the assumptions required for two 

studies to produce identical treatment effects (within the limits of sampling error). Then we 

discuss a proposed framework for using replication design assumptions to improve the design of 

replication studies, and to identify systematic sources of variation.  

Conceptual Framework 

We begin by describing a general model of the outcome-generating process in each study 

arm. Let  and  be the outcomes of interest for the original and replication study, 

respectively, where the subscript i denotes a unit from the target population in the original study 

(indexed by 0), and subscript j denotes a unit from the target population in the replication study 

0iY 1jY
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(indexed by 1). The outcomes can be written as nonparametric structural functions that depend 

on a unit’s treatment status Z Î {0,1}, individual characteristics X, and the overall setting S 

under which the original and replication study took place:  

 for the original study and  (1) 

  for the replication study. 

X and S may be vectors of variables that also include exogeneous error terms. The setting S 

includes all outcome-determining factors other than the treatment condition and individual 

characteristics of the unit. For example, study site characteristics like school urbanicity or 

percentage of free or reduced-price lunch and other factors such as cultural attitudes that may 

support or suppress the treatment effect are included in S. The setting S can vary across studies, 

but it also can vary across units within a study’s target population (as in a multisite RCT design). 

Nonparametric functions  and  also may differ across sites or time.1 Subscripts 0 and 1 refer 

to the original and replication study, respectively, indicating that the two studies may occur at 

different sites, different time points, or both. The use of subscripts i and j suggests that the 

populations of the original and replication study do not overlap or be the same. However, in 

cases where participants in both study arms are sampled or shared from the same population 

(simultaneously or at different time points), then some or even all participants across both study 

arms will belong to the same target population. 

The two structural equations (1) allow us to derive potential treatment and control 

outcomes for each study’s target population. For example, the potential treatment outcome for 

                                                             
1 We could also allow the outcome function to vary across subjects, but for notational simplicity 
we assume that all outcome variations across individuals can be expressed as variations in the 
functions’ arguments. 

0 0 0 0 0 0 0 0 0 0 0( , , ) ( , , )i i i i i i i i i iY z x s f Z z X x S s= = = =

1 1 1 1 1 1 1 1 1 1 1( , , ) ( , , )j j j j j j j j j jY z x s f Z z X x S s= = = =

0f 1f
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the original study is given by . This is the outcome we would observe if unit 

i were exposed to the treatment condition in the original study. Similarly,  

denotes the potential control outcome we would observe if unit i were exposed to the control 

condition in the original study. and  are the 

corresponding potential treatment and control outcomes for the replication study.  

Each study arm in the replication design can have its own causal quantity of interest. The 

original study, for example, may use an RCT and estimate the average treatment effect, ATE = 

. The replication study, however, may use observational data from a different 

site and estimate the average treatment effect for the treated, ATT = . 

However, even if both studies yield unbiased causal effects, the original result will not be 

replicated when the causal quantities differ across the two study designs. Replication of causal 

effects, therefore, requires much more stringent assumptions than what is needed for causal 

inference in single studies alone. Below, we briefly summarize assumptions required for 

identification and estimation of unbiased treatment effects for a single study. Then, we describe 

the stringent assumptions needed for causal effects to be replicated across multiple studies.  

Causal Identification and Estimation Assumptions for Treatment Effects in a Single Study 

The assumptions required to identify and estimate a causal effect depends on the study’s 

design, the data collected, and the statistical methods used to estimate effects. RCTs, non-

equivalent control group designs (NECGD), time series designs with control groups (including 

difference-in-differences), and instrumental variable approaches all rely on different assumptions 

to identify a causal effect. In an RCT, the identification of the ATE requires the assumption that 

potential outcomes are independent of treatment status, , which may be achieved 

if random assignment is correctly implemented. In an NECGD, causal identification of the ATE 

0 0 0 0(1) (1, , )i i i iY Y x s=

0 0 0 0(0) (0, , )i i i iY Y x s=

1 1 1 1(1) (1, , )j j j jY Y x s= 1 1 1 1(0) (0, , )j j j jY Y x s=

0 0[ (1) (0)]i iE Y Y-

1 1 1[ (1) (0) | 1]j j jE Y Y Z- =

( (1), (0))Y Y Z^
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or ATT demands that the conditional independence assumption is met, such that 

 . This means that potential outcomes must be independent of treatment 

selection given a set of covariates  and  (which may be subsets of the outcome-generating 

sets X and S). The NECGD also requires the positivity assumption, , such 

that each unit’s treatment probability, given  and , is greater than zero. In a comparative 

interrupted time series design, the common trend assumption must hold to identify the ATT, and 

for an instrumental variable approach, the exclusion restriction and monotonicity assumption 

must be met to identify the ATE for the latent subpopulation of compliers (Angrist, Imbens, & 

Rubin, 1996). Similar assumptions must be met for other research designs to identify a causal 

effect. 

The causal interpretation of the effects identified by the aforementioned designs requires 

one additional assumption—the stable-unit-treatment-value assumption (SUTVA; Imbens & 

Rubin, 2015). SUTVA implies (a) uniquely defined and implemented treatment and control 

conditions, (b) the absence of peer or spillover effects, and (c) the absence of any effects due to 

the mode of treatment assignment or selection. Combined, these conditions are implicitly 

encoded in the structural outcome equations above. The treatment indicator Z can only take on 

values of 0 or 1, indicating a uniquely defined treatment and control condition. The outcome  

(or ) depends only on the unit’s own treatment exposure but not on any other unit’s study 

participation or treatment exposure (i.e., no peer and spillover effects). Because the mode of 

treatment selection or assignment (e.g., random selection or self-selection) is not included as an 

argument in the outcome-generating functions, it does not affect the potential outcomes. This 

implies that there are no preference effects from being allowed to select one’s own treatment 

status.  

* *( (1), (0)) | ,Y Y Z X S^

*X *S

* *( 1| , ) 0P Z X S= >

*X *S

0iY

1jY
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Finally, identification of causal effects does not yet imply that it can be estimated without 

bias. A valid estimate of the causal quantity also requires an unbiased estimator – or at least a 

consistent estimator, provided that sample sizes are sufficiently large. Other technical 

assumptions such as the full rank of the design matrix (e.g., more observations than variables, no 

collinearity) are also needed. Moreover, Null Hypothesis Significance Testing (NHST) requires 

assumptions such as homoscedasticity, normality, and independence of observations. However, 

because this paper is about the identification and estimation of point estimates, we will limit our 

discussion to assumptions needed for point estimation, and do not discuss issues related to 

statistical inferences.2 

Causal Identification and Estimation Assumptions for the Replication of Treatment Effects  

In the above section, we showed that stringent assumptions are needed for a study to 

identify and estimate an unbiased causal effect. However, even in cases where multiple studies 

individually meet assumptions for producing causal results, it is possible that these results may 

not replicate, even within the limits of sampling error. A successful replication requires four 

additional replication assumptions (see Table 1 for a summary of assumptions and implications 

for practice).  

Assumption A1. Treatment and Outcome Stability  

The first replication assumption is that treatment and control conditions must be well 

defined, and that the outcome measure must be the same across both study arms. This 

assumption implies that there are no peer effects across studies, that participants do not react to 

how they were assigned to studies, and that there are no peer or spillover effects across studies. 

                                                             
2 Valentine et al. (2011) addresses the issue of statistical tests in assessing the replication of 
results. Steiner and Wong (in press) discusses methods for assessing correspondence in results in 
design replication studies.   
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The assumption corresponds to SUTVA in individual studies, but in replication designs, it 

requires treatment and outcome stability across multiple study arms. We explicitly state the 

implications of treatment and outcome stability in more detail: 

A1.1 No Variation in Treatment and Control Conditions. The treatment and control 

conditions must be identical across the original and replication study. That is, the treatment 

indicator Z in the two structural equations in (1) refers to the same uniquely defined treatment 

and control conditions. This implies that all components of the treatment and control conditions 

are known and implemented in exactly the same way. If, for example, the replication study 

includes a treatment component that differs from the original study, or the replication study has a 

weaker treatment dosage, then this assumption is violated. The assumption is also violated if 

participants in the control condition of the replication study have and use alternative treatment 

options that were not available to controls in the original study.   

A1.2 No Variation in Outcome Measures. The treatment and control conditions of both 

studies must be evaluated with respect to the same outcome Y. This means that the outcome in 

both studies must be measured with the same instruments, in the same settings, and at the same 

time points after the treatment was introduced. Any variation in the instrument, setting, or timing 

across studies may produce differences in treatment effects.   

A1.3 No Mode-of-Study-Selection Effects. The potential outcomes are not affected by 

participants’ selection into the original and replication study. That is, whether the participants are 

included in the study through self-selection or random selection does not affect the potential 

outcomes. This assumption may be violated if participants are randomly sampled from the target 

population for one study, and self-select into the second study arm. Then, if volunteers for the 
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study are especially motivated to respond to treatment conditions, differences in treatment effects 

may be introduced.    

A1.4 No Peer, Spillover, or Carryover Effects. The potential outcomes depend only on 

each participant’s exposure to treatment, and not on the treatment exposure of others in a 

different study arm. This assumption is violated if knowledge of treatments or peers from the 

original study affects the potential outcomes in the replication study. For example, a participant’s 

motivation may increase after learning that her peers were assigned to the treatment (or control) 

condition in the original study. Another example occurs if treatment participants in the 

replication received advice from treatment participants in the original study. In cases where the 

same units participate in both the original and replication study at different times (as in a 

switching replication design), the assumption would be violated if effects of the treatment and 

control conditions persist from one study to the next.  

Implications for Practice. To ensure stability in treatment conditions and outcomes across 

replication arms, investigators should consider in advance plausible validity threats. Will 

participants have knowledge of their treatment and study status, and will it affect their potential 

outcomes? Do participants in the original and replication study have opportunities to interact and 

share their experiences and knowledge? Can the treatment and outcome measures be 

implemented by multiple researchers in a consistent way, under the same time frame, and with 

high fidelity to the original protocol? If any of the assumptions are violated, we cannot expect to 

replicate a causal effect estimate.  

Assumption A2. Equivalence of Causal Estimands  

Successful replication of effect estimates (within the limits of sampling error) requires 

that the causal estimand of interest is the same across both study arms. That is, the original and 
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replication studies must have equivalent causal quantities for the same well-defined target 

population. In this section, we focus on the average treatment effect (ATE) but similar 

assumptions are needed for other potential quantities of interest across study arms, such as the 

average treatment effect for the treated (ATT). 

To formalize equivalence in causal estimands, we begin by assuming additive treatment 

effects so that the potential treatment outcome in both studies may be defined as the sum of the 

potential control outcome and the treatment effect:   

, and      (2) 

  .   

Here, the treatment functions  and  depend on unit characteristics  and  (respectively), 

and study setting factors  and  (respectively). These are characteristics that magnify or 

weaken the treatment effect, and they are subsets of all unit and study setting factors that affect 

the outcome ( , , , ). Thus, the effect-generating functions 

include all individual and study setting characteristics that explain treatment effect variation.  

The valid replication of causal effect requires equivalence of ATEs for the original and 

replication study: 

  (3) 

where, the expectations are taken with respect to the target populations of the original (P) and 

replication (Q) study.  

Equality (3) does not demand that the expected potential outcomes are equivalent across 

the original and replication study, but that the additive treatment effect must be identical across 

0 0 0 0 0 0 0 0 0(1, , ) (0, , ) ( , )i i i i i i i iY x s Y x s x st ¢ ¢= +

1 1 1 1 1 1 1 1 1(1, , ) (0, , ) ( , )j j j j j j j jY x s Y x s x st ¢ ¢= +

0t 1t 0ix¢ 1jx¢

0is¢ 1js¢

0 0i ix x¢ Í 1 1j jx x¢ Í 0 0i is s¢ Í 1 1j js s¢ Í

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 1 1 1

[ (1, , ) (0, , )] [ (1, , ) (0, , )]

[ ( , )] [ ( , )]

ATE ATE

P i i i i i i Q j j j j j j

i i j j

P Q

E Y x s Y x s E Y x s Y x s

E x s E x st t

- = -

¢ ¢ ¢ ¢=

=
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both study arms. This means that participants in the replication study may be – for example – 

more advantaged and have higher average potential outcomes than those in the original study, 

but the treatment must have the same additive (and not multiplicative) effect in both study arms. 

The equivalence of causal estimands is achieved if four requirements hold:3  

A2.1 Same Causal Quantity of Interest. The original and replication study must have the 

same causal quantity of interest. Here we assume that the parameter of interest is the ATE in 

both study arms. If, for example, the original study identifies the ATE and the replication 

identifies the ATT or the intent-to-treat effect, then equivalence in causal estimands is unlikely 

(unless additional assumptions such as constant treatment effects hold). 

A2.2 Identical Effect-Generating Processes. The process that generates the treatment 

effect must be identical for both studies, . This implies that the variable sets of 

individual characteristics and study setting that determine effect heterogeneity must be the same 

across studies ( and ) and exert the same effect on the outcome, such 

that whenever  and .  

A2.3 Identical Distribution of Population Characteristics. The target populations of the 

two studies must be identical with respect to the joint distribution of all individual characteristics 

 that modify the treatment effect. That is, target populations P and Q must have the same 

distribution of , but may differ with respect to other unit characteristics that do not moderate 

the magnitude of the treatment effect. If the distributions differ, then it must at least be possible 

                                                             
3 Equivalence can be achieved even if the four requirements do not hold. But in this case the 
effects of violating the requirements must offset each other. Since this is unlikely or at least hard 
to assess in practice, we do not further discuss such situations. 

0 1t t t= =

0 1X X X¢ ¢ ¢= = 0 1S S S¢ ¢ ¢= =

0 0 0 1 1 1( , ) ( , )i i j jx s x st t¢ ¢ ¢ ¢= 0 1i jx x¢ ¢= 0 1i js s¢ ¢=

X ¢

X ¢
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to reweight or match the replication population Q such that it then has the same distribution of 

as P (for further discussion see below).  

A2.4 Identical Distribution of Setting Variables. Both studies must have the same joint 

distribution of setting variables that moderate the treatment effect. If setting characteristics 

do not vary across participants within a study, then these factors must be identical across the 

original and replication studies to achieve overlap in setting characteristics. When all setting 

factors are identical across study arms, then the above assumptions are sufficient for establishing 

equivalence in ATEP and ATEQ. However, in cases where setting characteristics vary across 

participants within studies (i.e. multisite RCT designs), then the joint distribution of unit 

characteristics and settings ( , ) must be identical across study arms. 

Implications for practice. Although these assumptions are stringent, there are 

circumstances under which equivalence in causal estimands may be achieved. For example, in 

reproducibility efforts where the replication study shares the same observed data as the original 

study, such that  (because i = j), the causal estimands are equivalent because the 

two study arms have the same causal quantity for the same target population. Equivalent causal 

estimands may also be achieved when units are randomly sampled from the same target 

population (at the same site and at the same time) into the original and replication studies. If 

treatment and outcome conditions are implemented in the same way, then random sampling of 

units into original and replication studies ensures that the effect-generating process, the target 

population, and the setting do not vary across study arms (provided assumption A1 holds). There 

also may be cases where it is reasonable to assume that the treatment effect is constant, or at least 

does not systematically vary with unit characteristics or setting variables. Then, even a lack of 

overlap in population and setting characteristics will not yield differences in causal estimands.  

X ¢

S ¢ S ¢

X ¢ S ¢

1 1 0j i iY Y Y= =
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 Finally, there may be cases where the original and replication arms do not share the same 

eligibility criteria for participating in the study, producing different underlying target populations 

whose distributions of  might not or only partially overlap. For example, the replication study 

may target a less advantaged population than those who were eligible for the original study. 

Thus, it may not be possible to achieve identical distributions of  through reweighting or 

matching of units, even if  would be fully observed. The causal estimands will differ across 

the study arms.  

In the replication example with two studies with different eligibility requirements, it may 

be possible to achieve common support with respect to  (or X) for subpopulations of P and Q 

by trimming units that do not overlap on . For example, the researcher may replicate the 

causal effect for the subpopulation of units that are less advantaged. The researcher may define a 

“trimmed” replication population, R, for which common support on (or X) can be assumed. 

This requires a re-analysis of the original study where the advantaged units are deleted based on 

clearly defined eligibility criteria. The replication population may refer to the characteristic 

distribution of the subset in P, in Q, or any other distribution to which we wish to extrapolate. 

Depending on the choice of the replication population R, the study populations P and Q may 

need to be reweighted or matched to reflect the distribution of   in R.  

Thus far, we have only discussed the assumptions with respect to an additive treatment 

effect. In cases where the treatment effect is multiplicative, stronger assumptions are needed. 

When treatment effects are multiplicative, A2.2 requires identical outcome-generating functions, 

 (in equation 1), rather than identical effect-generating functions, and A2.3 and A2.4 

require identical distributions with respect to X and S rather than  and . Finally, one might 

consider effect ratios instead of ATEs for evaluating the causal effect of a treatment. 
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X ¢

X ¢

X ¢

X ¢
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A3. The Causal Estimand is Identified in Both Study Arms 

Assumptions A1 and A2 restrict the data-generating process and the choice of a causal 

estimands to ensure direct replicability, at least in theory. In practice, we also need to make sure 

that the causal estimand, ATER, is identified in both studies. We addressed identification 

assumptions above (i.e. see section on the “causal identification for a single study”), but 

replication designs pose additional challenges for identification. One issue occurs when target 

populations in the original and replication studies are not equivalent in terms of the distribution 

of   and .  Then, identification requires that one or both study populations need to be 

reweighted or matched with respect to a potentially trimmed replication population R. However, 

when  and  are not fully observed or reliably measured, then the ATER will not be 

identified in at least one study arm. Thus, even if ATEP and ATEQ are identified, it does not 

imply that ATER is identified because it requires reliable measures of  and for reweighting 

or matching with respect to R.     

Implications for practice. The identification of the same unique causal estimand, ATER, 

in both studies is facilitated if both studies rely on identical or very similar study designs that (a) 

require the least assumptions about inferring a causal effect, and (b) draw units from the same 

target population and site with identical eligibility criteria. For example, if both studies use a 

well implemented RCT, then each study’s causal effect is identified with a minimal set of 

assumptions (independence and SUTVA). Moreover, if both RCTs draw their units from the 

same eligible target population, then the two study populations P and Q will be very similar with 

respect to X and S, such that no reweighting or matching with regard to a shared replication 

population R might be required.  

X ¢ S ¢

X ¢ S ¢

X ¢ S ¢
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When research designs across study arms differ and have different underlying target 

populations, it will be more challenging for the researcher to address A3. The researcher may not 

have complete knowledge and reliable measure of unit and setting characteristics. In addition, for 

study designs that rest on strong causal identification assumptions (e.g., NECGD or instrumental 

variable designs), replication success will also depend on the credibility of the research design in 

addressing these assumptions. For example, failure to replicate may be due to violations of the 

conditional independence or exogeneity assumption. 

A4. The Causal Estimand is Estimable Without Bias in Both Studies. 

Once ATER is causally identified in each study arm, the effect must be estimated without 

bias in the original and replication study. Ideally, both studies use an unbiased estimator or at 

least a consistent estimator, provided sample sizes are large such that the bias is negligibly small. 

This assumption may be violated if, for example, the original study uses the mean difference 

between the outcomes of the randomized treatment and control group to estimate the causal 

effect, while the replication study uses observational data and a linear regression estimator with 

an additional covariance adjustment (for a set of observed covariates). Though the mean 

difference is unbiased for ATE, the regression estimator may be biased due to a violation of the 

linearity assumption and the implicit variance-of-treatment weighting (i.e., instead of ATE, a 

variance-of-treatment weighted ATE is estimated; Angrist & Pischke, 2008).  

Implications for practice. Ensuring unbiased estimation of effects will depend on the 

estimation procedure and the corresponding assumptions. To avoid functional form and 

distributional assumptions, researchers should consider non- and semiparametric estimation 

procedures (despite the slight loss in efficiency). Replication studies also benefit from large 
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sample sizes: consistent estimators will be less biased and the replication of effect estimates may 

be tested with more power. 

A5. Estimands, Estimators, and Estimates are Correctly Reported in Both Studies. 

The last assumption focuses on correct reporting of the causal estimands, their estimators, 

and the corresponding estimates. Even after ATER has been correctly estimated in both studies, 

incorrect reporting may lead to the conclusion that the replication study failed to replicate the 

causal effect estimate of the original study. A replication failure occurs if the two estimates 

diverge due to incorrect reporting. That is, in at least one of the studies, the published effect 

differs from the estimated effect. This may result if there is a typographical error in transcribing 

effects, or an inadvertent use of the wrong table of effects. It is also possible the causal estimand 

or estimator has been incorrectly reported in one study such that the original and replication 

study no longer seem comparable. Then, the results of a replication study will very likely be 

dismissed even if the effect estimates are almost identical. 

Implications for practice. Reporting errors can never be entirely ruled out. However, if 

study protocols, code files of the analysis, and data are published in addition to the final report, 

then independent investigators may at least examine the reproducibility of results by (a) reading 

what actually has been done according to protocols and code files and (b) by reanalyzing the data 

provided. Thus, funding agencies and journal editors should increase requirements for data 

transparency to improve accessibility of files for reproducibility efforts.    

Evaluating Replication of Effects 

Researchers use multiple methods for evaluating the replication of effects. The most 

common set of measures look at the direction, magnitude, and statistical significance patterns of 

effects in the original and replication studies. These approaches are similar to vote counting 
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procedures in research synthesis, where correspondence in results is determined by whether 

treatment effects in the original and replication studies exceed a substantively important 

threshold or are statistically significant.  

An alternative measure of correspondence in results includes estimating the difference in 

original and replication study results, which we will call “replication bias” (Δ#).  Here, 

replication bias is defined as the expected difference in original and replication effect estimates: 

Δ# = &('̂)) − &(τ,-), where '̂) is the effect estimate for the original study and '̂- is the effect 

estimate for the replication study. Whether results replicate is determined through substantive 

and statistical criteria. The researcher may evaluate whether the effect difference is below some 

minimum threshold for which the results are assumed to be equivalent. To account for sampling 

error, the researcher may conduct formal statistical tests of difference, equivalence, or compare 

the confidence intervals of original and replication study results (see Steiner and Wong (2018) 

for assessing correspondence of results in design replication studies). When multiple replication 

results exist (i.e. the “Many Labs” Project), the researcher may use meta-analytic approaches for 

synthesizing effect sizes across multiple studies (Valentine et al., 2011).4  

3. Replication Design Variants 

 We have demonstrated the stringent assumptions needed for multiple studies to 

produce the same effect. These assumptions are required for any direct or statistical replication 

study, where the goal is to implement the exact same study and treatment procedures on new 

random samples of participants. However, replication design assumptions may also be used as a 

                                                             
4 Assessing the correspondence of results in an original and replication study is a central issue for 
a replication as a research methodology. However, because this paper is about replication as a 
research design, we address these methods briefly and refer readers to more extended discussions 
of these methods (Valentine et al., 2011).  
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framework for assessing the robustness of effects, and for identifying sources of treatment effect 

heterogeneity. For example, researchers may implement different replication design variants to 

probe whether there were violations in identification (A3) or estimation (A4) assumptions, or to 

evaluate whether results replicate over different sub-populations of participants (A2). In these 

cases, violations of any replication assumptions will produce differences in effect estimates. 

Therefore, the most interpretable replication designs will be ones that evaulate potential 

violations to specific design assumptions systematically, ensuring that all other assumptions are 

met.  

 In this section, we discuss how knowledge of replication assumptions can help 

researchers understand the purposes of different replication design variants. We highlight three 

common replication designs – prospective, within-study, and matched approaches – and discuss 

their basic design structures, their relative strengths and weaknesses, and examples of each 

method. Table 2 summarizes examples for each replication design variant, and how well 

replication design assumptions were addressed in each case.  

Prospective Replication Designs  

In prospective replication designs, both study arms – the original and replication studies – 

are planned in advance and conducted simultaneously. Although prospective replication designs 

are rare, they provide an important example for how researchers may incorporate research design 

features for addressing replication assumptions.  

The basic structure of the prospective replication design is depicted in Figure 1. Here, 

participants are sampled from an overall target population and are randomly assigned into one of 

two study arms. This ensures that the target population will be the same across both study arms. 

Within each study arm, participants are randomly assigned again into treatment and control 
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conditions. The same treatments, measures, and research protocols are administered in both 

study arms, at the same time. Identical analytic procedures are used to estimate the causal 

estimand of interest. The same reporting protocol is used to describe the data, treatments, 

analysis code, and sensitivity tests. The two study arms may be implemented by independent – 

but coordinated – research teams.  

 Example 1. A variant of the prospective approach was introduced by Shadish, Clark 

and Steiner (2008) and implemented again by Shadish, Galindo, Wong, and Steiner (2011). We 

describe Shadish et al. (2008) to demonstrate how prospective replication designs may be 

implemented in real world settings, and what can be learned from this approach. In Shadish et al. 

(2008), university students within the same site were randomly assigned into two study arms. 

Within each study arm, they were assigned again into a short vocabulary or math workshop. The 

interventions were short, highly scripted, and implemented with high fidelity. Outcome measures 

of students’ achievement in vocabulary and math were administered immediately after the 

intervention was completed.  

 Instead of two RCTs, Shadish et al. used an RCT only for the original study but a 

NECGD with self-selction for the replication study. They did so because their goal was to 

evaluate whether observational methods can identify and estimate causally valid treatment 

effects in practice. That is, Shadish et al. investigated whether the observational study can 

replicate the causal benchmark estimate from the RCT. For the NECGD, the research team 

allowed participants to select the mathematics or vocabulary training of their preference. They 

then used propensity score matching to estimate the average treatment effect from the NECGD 

and compared it to the RCT estimate. Any difference in results from the original and replication 

study was interpreted as "bias" from the observational method. This approach is sometimes 
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referred to as a “design replication” study. This is because the researcher interprets failure to 

replicate results as the result of poor performance in the observational design for identifying 

valid treatment effects (violation of A3).  

 The Shadish et al. (2008) study demonstrates the multiple advantages of prospective 

replication designs (Table 2). The treatment and control conditions were well defined across both 

study arms, and because the intervention was short and relatively low-stakes, there was not much 

opportunity for spillover or peer effects (A1). Outcomes were measured in the same way across 

treatment conditions and study arms, and implemented at the same time (A1). In both study 

arms, they aimed at the same causal estimand (ATE) and randomization into study arms ensured 

that target populations in the original and replication study were equivalent (A2). Treatment 

effects were estimated the same way for the matched and RCT samples, ensuring that there were 

no differences due to estimation procedures (A3). Subsequent reanalysis of the original data by 

independent investigators found no reporting errors of results (A4). Thus, assuming STUVA 

(e.g., absence of preference or peer effects), any difference in effect estimates was credibly 

interpreted as failure in the observational method to identify valid treatment effects (A3).  

 The prospective design allows researchers to evaluate violations to replication design 

assumptions, and to identify potential sources of treatment effect variation. In the Shadish et al. 

(2008) example, the researchers concluded that despite using different methods for identifying 

effects (RCT vs. observational methods), the study arms were able to replicate results. This 

finding implied that in this specific context at least, A3 was met (identification of equivalent 

causal estimands). It is also possible for prospective designs to examine other potential violations 

to replication assumptions, including whether results replicate when the intensity of treatment 

dosage varies across study arms; when participants with higher pretest scores are assigned to the 
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replication arm; or when different estimators are used to estimate treatment effects. The strength 

of the replication design rests on whether other replication design assumptions (that are not being 

evaluated) are met.  

 There are limitations of the prospective approach as well. The design must be planned 

in advance, so it may be time consuming and expensive for researchers to implement. If units are 

randomized into the original and replication studies, it requires sufficient sample sizes – often 

within the same site – to support multiple study arms. To ensure well defined treatment 

conditions that can be implemented with fidelity, it helps if the intervention is short and easily 

standardized with quick follow-up measures. For these reasons, this design may have limited 

applications in intervention evaluation contexts. Prospective approaches may be most 

appropriate for researchers who are interested in replication of results in highly controlled, 

laboratory-like settings with short interventions and follow-up measures.   

Within-Study Replication Designs 

 In within-study approaches, the researcher evaluates whether results replicate using the 

same or similar data, analysis procedures, and samples across study arms, but tests for potential 

violations of replication assumptions by introducing systematic differences in study procedures 

across the two arms. For example, an independent investigator may use data and code files 

provided by the original investigator and attempt to reproduce a result that appeared in the 

original paper. Here, the study protocol to produce the original result is depicted by the first 

study arm in Figure 1; the independent investigator’s attempt to reproduce the result is depicted 

by the second study arm. Both study arms share the same sample of participants, the same 

experimental conditions and outcome measures, the same research design and causal estimand of 

interest, the same analytic procedures, and the same setting and time. There should be no 
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differences in results. When lack of correspondence in results occur, it is because of independent 

investigators reported the results (A5). Within-study replication designs may be implemented by 

independent investigators, or by the same researcher across both study arms. Below we describe 

two examples of how within-study replications may be implemented.   

 Example 2. Chang and Li (2015) used a within-study replication design in their effort 

to reproduce results from 67 papers in 13 economics journals. Using data and code-replication 

files provided by the original authors, Chang and Li found that only 49% of the publication 

results could be reproduced (sometimes requiring additional assistance from the original 

investigators). For studies with results that could not be reproduced, the majority – 79% – could 

not be replicated because of missing or incorrect data or code to report the correct results.  

 This example shows two advantages of the within-study design (Table 2). First, it 

yields replication results with clear interpretations about why these effects did not replicate. The 

researcher has high confidence that the first four replication design assumptions were met (A1-

A4) – any observed discrepancy was due to a reporting error (A5). Second, the design is straight-

forward to implement and does not require additional resources in terms of data collection. It 

needs only data and coding files from the original study, and an independent investigator to 

assess the reproducibility of results. Because of the feasibility of this approach, journals in 

economics, medicine, and education are adopting data transparency policies that promote within-

study replication efforts. Its limitation, however, is that it identifies replication bias only due to 

errors in reporting. If, for example, treatment effects were not causally identified in the original 

study (a violation of A3), the method would reproduce bias from the original study.   

 Example 3. Duncan, Engel, Claessens, and Dowsett (2014) examined a variant of the 

within-study approach (Table 2). The authors coded 50 articles from high ranking, peer-reviewed 
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journals in two disciplines: economics and developmental psychology. Their purpose was to 

compare across disciplines the percentage of published studies that examined the reproducibility 

of effects using different estimation procedures, data sources, and sub-populations. In this 

example, the main study result formulated the “original study arm” in Figure 1; results from 

additional analyses created the “replication arms.” Here, replication design assumptions are 

systematically examined by comparing effects from different sub-populations, data sources, and 

methods. However, because the comparisons of effects occurred within the same study setting by 

the same researcher, most other replication design assumptions were met. This allowed the 

researchers to examine the sensitivity of effects to potential violations of specific replication 

design assumptions.  

 Duncan et al. (2014) looked at the percentage of studies that examined results 

sensitivity using different identification or estimation procedures (violations of A3 or A4), while 

maintaining same target populations, outcome measures, and treatment conditions (A1 and A2). 

They also looked at studies that assessed the replication of results using different datasets – 

which introduced variations in study conditions and outcome measures (violation of A1), as well 

as in individual and setting characteristics (violation of A2) – but employed the same 

identification and estimation methods as used in the original studies (A3 and A4). Finally, the 

subgroup comparisons allowed researchers to assess the robustness of results with different 

individual characteristics (violation of A2), while ensuring that treatment conditions and research 

methods remained the same across study arms (A1, A3, and A4).  The advantage of this 

approach is that it is also straight-forward to implement, and results are easily interpretable. 

Indeed, Duncan et al. found evidence that in economics, the practice is already widely adopted. 

Between 68% and 90% of recently published papers examined the robustness of results. The 
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practice, however, is observed in only 18% and 32% of recent papers in developmental 

psychology. The limitation of this replication design is that because it is usually conducted by the 

original researcher, it may have little to say about replication bias due to reporting error.   

Matched Replication Designs 

 In matched designs, the original and replication arms are conducted at different times, 

at different sites, and usually, by different investigators. There also may be differences in how 

treatment conditions are implemented, and in how treatment effects are identified, estimated, and 

reported across study arms. Matched designs differ from within-study or prospective designs 

because in the latter two approaches, the researcher introduces systematic variation across study 

arms through differences in research design features or statistical analysis. In matched designs, 

study arm differences occur naturally and are not researcher controlled. To address replication 

assumptions, the researcher may attempt to match on characteristics related to treatment 

conditions (A1), units and settings (A2), and methodology (A3 and A4). However, a successful 

replication of results can only be expected if all assumptions A1 through A5 are met. But often, 

researchers will lack sufficient knowledge about whether their matching procedures will address 

all replication assumptions. For example, it may not be clear which study factors moderate 

treatment effects (A2). 

 In some matched designs, it may be possible for the researcher to compare results for a 

sub-population of units where replication design assumptions are plausibly met, or for which 

constant treatment effects may be assumed. However, in many cases, it is impossible for the 

researcher to match on all possible study and treatment related characteristics that moderate the 

magnitude of effects. This may be because the factors are either unknown or unobserved by the 

researcher, or because there is no common support on these covariates in the original and 
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replication study. For example, the original study arm may include only boys while the 

replication study includes only girls; the original study may use an RCT for identifying the ATE 

while the replication uses an RDD to identify a local ATE at the cutoff score. There also may be 

cultural and setting differences across study arms that cannot be matched. In these cases, the 

researcher may be interested in estimating treatment effect variation due to potential violations in 

replication design assumptions. However, a meaningful interpretation of effect variations is only 

possible if the researcher knows which assumptions has been violated. 

 The extent to which the researcher will match treatment and study characteristics to 

address replication assumptions depends on the purpose of the replication effort. In studies that 

attempt to replicate the original procedures as closely as possible, the researcher may attempt to 

address all design assumptions by matching on all relevant study (A2 – A5) and treatment (A1) 

characteristics. In conceptual replications, the researcher may match on broadly defined 

characteristics related to the “treatment” (e.g. grade retention, early childhood education) (A1), 

but may be less concerned about matching on study, sample, setting, and method characteristics 

across the study arms.  

 One challenge with matched designs is that because of the post hoc nature of the 

approach, multiple replication design violations will often occur simultaneously. It may be 

impossible for the researcher to interpret results from matched designs, especially when effects 

do not replicate. Did the effect not replicate because of variations in contexts and settings, in 

sample participants, or some other source of hidden variation? It may be hard for the researcher 

to tell. Currently, replication and original studies are “matched” informally and qualitatively, if at 

all. There are rarely empirical diagnostics demonstrating how well replication design 

assumptions are met.  
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 Below, we describe two examples of matched replication designs. The first is a “close” 

replication design, where the replicators attempted to match as many study features as possible; 

the second is an example of conceptual replications, where early childhood education researchers 

attempt to summarize findings from evaluations of pre-kindergarten programs.  

  Example 4. A collaborative of 36 independent research teams from 12 countries 

examined the reproducibility of 13 well-known effects in psychology, and the robustness of these 

effects across samples, settings, and cultures (Klein et al., 2014). The research team selected 

effects to be replicated based on several key criteria. First, effects had to be delivered in a 

standardized format online or in person. This helped maintain the integrity of the original 

treatment conditions under investigation. Second, the study designs had to be short in duration 

and straight-forward for independent investigators to implement. This was to allow for multiple 

effects to be evaluated in a single testing session. Third, with the exception of a single 

correlational study, effects were evaluated using simple, two group designs. Fourth, the 13 

effects were selected to represent variations in topics, time frames since the original study was 

conducted, and certainty of their reproducibility.5  

 In total, 6,355 individuals participated in the replication effort. Labs delivered near 

identical scripts, translating and adapting the language as necessary. They documented key 

information about the sampling frame, recruitment process, achieved sample, and other factors 

related to the local context. Deviations from the original study protocol were also recorded. 

Overall, the researchers found that 10 of the 13 results were replicated based on multiple 

measures of correspondence; three had weak to no evidence of reproducibility. Statistical tests 

                                                             
5 Some effects already had been shown to be reproducible by independent researchers, while 
other effects had not yet been investigated. 
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suggested that observed differences in sample characteristics and local contexts failed to explain 

fully the discrepancies in results for the three effects that did not replicate. This led the 

researchers to conclude that at least with this sample of studies, much of the variation was due to 

the effects themselves, rather than systematic differences in sites, samples, and contexts. 

These findings highlight the challenge of matched designs of even close replication 

studies (Table 2). Replication bias may occur if any one of the design assumptions is violated. 

There may be unmeasured differences in treatment conditions across study arms, or from 

multiple study factors that interact to introduce hidden biases. There could have also been 

differences based on how long it had been since the original study was conducted, and how well 

these effects could be translated to online platforms. Finally, effects from one study could have 

influenced results from another because multiple effects were under investigations 

simultaneously. The challenge here is that without research design elements to control these 

factors systematically, it is hard to interpret the source of the effect variations in the replication 

designs. However, matched designs are often needed when the replication of an important 

finding has yet to be established, and there is interest in assessing the robustness of results across 

different treatments, samples, settings, and outcomes. In these cases, investigators should 

conduct empirical diagnostics to probe and describe each design assumption systematically.   

Example 5. The Brookings Institute and the Duke Center for Child and Family Policy 

convened a panel of early childhood education experts to review research on conceptual 

replications of the impacts of state pre-kindergarten (pre-k) programs (Duke University & 

Brookings Institute, 2017). The panel examined results from the earliest, small scale RCT 

evaluations of the Perry Preschool (Schweinhart, Montie, Xiang et al., 2005) and the Carolina 

Abecedarian (Campbell & Ramey, 2010) Projects, to findings from the national RCT evaluation 
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of Head Start (Puma, Bell, Cook, et al., 2010), to more recent experimental and quasi-

experimental evidence of state-specific pre-k programs (Gormley, 2007; Lipsey et al., 2013; 

Magnuson, Ruhm, & Waldfogel, 2007; Wong, Cook, Barnett, & Jung, 2008). The panel noted 

that although many studies found “greater improvements in learning at the end of the pre-k year 

for economically disadvantaged children,” (Duke University & Brookings Institute, 2017, pg. 

12) the magnitude of these effects varied. In addition, evaluations of early childhood education 

programs failed to produce consistent results about the longer-term impacts on children’s 

academic and life outcomes.  

The panel noted the multiple challenges with identifying reasons for why these studies 

arrived at different conclusions about the longer-term impacts of state pre-k (Table 2). The 

studies include tremendous variation in treatments, sample and setting characteristics, and 

research designs under which the preschool programs were evaluated. For example, the panel 

observed that the duration, intensity, and focus of the early childhood education has changed 

across time and program types (from Head Start to private childcare centers to state pre-k 

programs), with some interventions focused on “whole child” development that includes social-

emotional, physical, and cognitive development, while others targeted children’s early 

achievement outcomes (violation of A1). Alternative childcare options for children who are not 

enrolled in public preschool programs also varied across time, and even across sites within the 

same study (Feller, Grindal, Miratrix, & Page, 2016). This yielded important differences in the 

control conditions under which treatments were being evaluated against (violation of A1). Pre-k 

programs focused on different populations of students – with some targeting children who are at 

risk for school failure, and others enrolling all age-eligible children, regardless of income or need 

(violation of A2). In addition, educators may have become more aware of how to promote 
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children’s early socio-emotional, cognitive, and physical development. This may have changed 

the fundamental process for how children learn and develop in and out of school, resulting in 

differences in the pre-k effect generating process over time (violation of A2).  

Finally, the evaluations studies varied in how well treatment effects were identified and 

estimated (A3 and A4). Some employed rigorous RCT approaches while others used quasi-

experimental methods, such as matching or interrupted series designs. An issue that plagues 

nearly all longer-term follow-up studies of state pre-k is that students attrite as they move from 

early preschool to elementary school, and from elementary school, to middle school and beyond. 

Despite the large body of research that exists on the effectiveness of early childhood education 

programs, the Brookings panel stated that “understanding the impact of is an extremely 

complicated endeavor” (Duke University & Brookings Institute, 2017, pg. 3). The Brookings 

report highlights the challenges with interpreting results from conceptual replications when none 

of the replication design assumptions are met. It may be impossible for the researcher to 

understand inside the “black box” of why treatment effects vary across studies.   

4. Discussion 

This paper highlights the multiple, stringent assumptions required for replication designs 

to produce the same effect (within the limits of sampling error). First, there must be stability in 

the outcomes and treatment conditions across study arms. This implies that treatment conditions 

are well defined, and that there are no peer or contamination effects across study arms. Second, 

the causal estimand of interest that is being compared must be same. That is, the causal quantity 

of interest, the effect data generating process, and the distributions of the population and setting 

characteristics that moderate treatment effects must all be the same. Third, the causal estimand of 

interest for the replication population must be well identified across both studies. This may be 



 34 

achieved through an RCT or a well implemented quasi-experiment. Fourth, an unbiased – or 

consistent – estimator with sufficiently large samples must be used for estimating effects. Fifth, 

there should be no reporting error of results and methods. A fair and interpretable replication test 

requires careful consideration of all replication assumptions.  

Addressing Replication Assumptions 

Given the multiple ways in which replication assumptions may be violated, it is perhaps 

not surprising that replication rates in the social and health sciences are low (Ioannidis, 2005; 

Makel & Plucker, 2014; Mackel, Plucker, & Hegarty, 2012). However, the last fifty years of the 

causal inference literature has provided useful guidance about how researchers may consider and 

address replication design assumptions.  

As a matter of practice, we recommend that researchers are proactive about identifying 

potential sources of replication bias and addressing replication assumptions. That is, they should 

identify specific and plausible threats based on substantive knowledge about the data and effect 

generating processes, hypothesize data patterns that should emerge if these threats are realized, 

and construct empirical tests and diagnostic probes for ruling out such threats. In most cases, 

replication assumptions will be achieved by implementing high quality research designs (e.g. 

randomization of participants into the original and replication study arms) or by using statistical 

adjustment procedures with rich covariate information (i.e. reweighting of units in the replication 

study such that they reflect the same distribution of characteristics in the original study).  

This paper provides real world examples for how researchers may address replication 

assumptions in field settings. To ensure stability in treatment conditions and outcomes across 

replication arms (A1), researchers should register and document their research procedures and 

outcome measures, incorporate fidelity measures of study conditions (treatment and control), and 
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assess whether participants have knowledge of study and treatment status. To ensure equivalence 

in causal estimands (A2), researchers may implement a prospective replication design and 

randomly assign units into study arms. They may also match or reweight participants so that the 

distribution of unit characteristics is similar across both study arms. Treatment effects may be 

identified through an RCT or quasi-experimental design (A3). Covariate balance tests of 

treatment and control units are helpful diagnostics for addressing this assumption. Ensuring 

unbiased estimation of effects will depend on the estimation procedure itself (A4), but a pre-

registration plan for the analysis protocol will help document sensitivity tests that are conducted 

by the reseasrchers. It may also provide an opportunity for researchers to receive feedback on 

their sensitivity tests. To reduce reporting error of results, pre-registration of analysis plans that 

specify treatment effects of interest will help researchers decide in advance which results to 

report. Researchers may also improve the reproducibility of their own results by sharing original 

data and code files of published work. Finally, in cases where replication design assumptions are 

not met, baseline measures describing differences in treatment implementations, causal quantities 

of interest, unit and setting characteristics, and research methods are helpful for describing the 

extent to which assumptions have been violated. 

Selecting a Replication Design Approach 

As we have shown, replication design approaches vary in their comparative strengths and 

weaknesses. They also serve different purposes. A key benefit of prospective and within-study 

approaches is that these designs provide greater confidence that replication assumptions are met. 

They also help researchers understand why treatment effects vary when results do not replicate. 

Our sense is that these approaches may be most useful early in the research cycle, when the 

investigator is evaluating and assessing the robustness of results to potential violations in the 
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replication design assumption related to minor differences in settings and units, as well as in 

research methodology and reporting. However, these designs may be limited in that they fail to 

capture all potential sources of replication bias that may occur. For example, within-study 

replications may reproduce the same estimation bias across studies if the goal is to evaluate only 

whether there was reporting error.  

Matched replication designs are also critical for the accumulation of scientific 

knowledge. There is a strong need to know whether treatment effects are replicable over natural 

sources of variation, and the extent of the variation in treatment effects. However, results from 

matched replication studies may be challenging for researchers and policy-makers to interpret 

given that diagnostics for replication assumptions are rarely reported.  

To improve the replicability of results in science more generally, our recommendation is 

to encourage replication design variants at every phase of the research cycle. For example, as the 

intervention is being developed and piloted, prospective replication studies conducted by 

dependent and independent researchers may be appropriate for assessing the robustness of results 

in controlled lab settings. Once the intervention has been evaluated, data have been collected, 

and results are to be published, within-study replications may be warranted to assess the 

robustness of results to different methodological assumptions, and to detect reporting errors from 

the researcher. Matched replication designs are useful for understanding treatment effect 

heterogeneity under natural sources of variation in study and treatment conditions. The 

replicability of results from matched designs is especially important as policy-makers and 

program officials consider adopting an intervention or treatment for scale-up.   

Finally, it is worth noting that replication assumptions are closely related to assumptions 

required for causal generalization (Cole & Stuart, 2010; Stuart, Cole, Bradshaw & Leaf, 2011; 
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Tipton, 2012), or transportability of effects (Pearl & Bareinboim, 2014). The replication design 

can be seen as an effort to empirically evaluate whether the causal effect found in the original 

study can be transported to the population, site, and time of the replication study (or vice versa). 

The only difference is that the replication design requires the same target population across both 

study arms (A2). This is not required in causal generalization methods because it’s very purpose 

is to extrapolate treatment effects to target populations not included in the original study.  

Limitations 

 This paper focuses on presenting replication as a research design for evaluating 

whether two study effects replicate (within the limits of sampling error). To this end, we have not 

addressed other important methodological issues related to the implementation and analysis of 

replication designs. Goodman, Fanelli, and Ioannidis (2016), for example, distinguishes between 

"methods" and "results" replications. Methods replication seeks to evaluate whether there is 

sufficient information for independent researchers to implement the methodological procedure 

used in the original study, while results replication evaluates whether the same conclusion is 

obtained by an independent investigator using similar methodological procedures. This paper 

examines conditions required for results replication. Although knowledge of replication design 

assumptions may improve “methods replication,” we do not address the many implementation 

issues that arise in ensuring that methodological procedures are replicable across study arms. 

Future work is needed to address these questions.  

 Recent methodological work on replication has focused on statistical and substantive 

criteria for assessing correspondence in study results (Goodman, 1999; Simonsohn, 2015). In 

addition to replication bias, two studies may fail to produce the same treatment effect because of 

sampling error, or because either or both study arms are underpowered for comparing effects 
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(Simonsohn, 2015). There is no current standard for making statistical inferences about whether 

results from two studies replicate. Steiner and Wong (in press) discuss the benefits and 

limitations of conclusion-based (e.g. comparing the direction, size, and statistical significance 

patterns) and distance-based measures (e.g. estimates of replication bias) for assessing 

correspondence in results in design replication approaches with two study arms. They 

recommend an equivalence framework for assessing correspondence in results (Steiner & Wong, 

in press). Others have recommended Baysian methods for assessing correspondence in results 

(Goodman et al., 2016; Rindskopf, Shadish, & Clark, in press; Wagenmakers, Wetzels, 

Borsboom, & van der Maas, 2011), or changing the p-value for determining statistical 

significance under NHST (Benjamin et al., 2017). When results from multiple replications are 

available, meta-analytic methods are essential for estimating systematic and random sources of 

variation in treatment effects.   

Conclusion 

One of the great methodological innovations in the twentieth century has been the 

introduction of the potential outcomes framework for understanding causal inferences. The 

approach has the clear advantage of identifying causal estimands of interest, as well as helping 

researchers understand the formal assumptions needed for a research design to produce valid 

effects. We have extended this framework to replication designs, and the stringent assumption 

needed for two studies to produce the same effect. Although replication has yet to be established 

as a formal methology in its own right, we believe that conceptualizing the approach as research 

design will provide researchers with tools for understanding and improving replication studies in 

the future.   
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Figure 1. Replication Design and its Assumptions with Two Study Arms 
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Table 1. Summary of Replication Design Assumptions and Their Implications for Practice 
 Assumption Requirements Implications for Practice 

A1 Outcome and 
Treatment 
Condition Stability 

1. Well defined and identical 
treatment conditions across study 
arms. 
2. Treatment effects are evaluated on 
the same outcome measure Y. 
3. Potential outcomes are affected 
only by exposure to study and 
treatment conditions, and not by how 
units were assigned into conditions. 
4. Non-interference between 
participants within each study arm, 
and across study arms. 

1. Evaluate theory and substantive knowledge of study setting to 
determine whether treatment conditions vary across study arms, 
whether participants have knowledge of their study and 
treatment status, whether participants are likely to react to their 
status, and share experience/knowledge with others.  
2. Determine in advance outcome measures of interest, and plan 
for how outcome measures are administered. 
3. Incorporate fidelity measures for documenting treatment and 
control conditions. 
4. Document deviations from treatment and study protocol in 
pre-registration plan. 

A2 Equivalence in 
Causal Estimand 

1. Both study arms have the same 
causal quantity of interest (e.g. ATE, 
ATT). 
2. The effect-generating processes 
are identical across both study arms. 
3. The target populations of both 
study arms must be equivalent with 
respect to the joint distribution of 
effect determining population 
characteristics X'.  
4. Both study arms must have the 
same joint distribution of setting 
characteristics S' that moderate 
treatment effects.  
 
If treatment effects are multiplicative, 
assume identical data generating 
process on the outcome and 

Five scenarios for ensuring equivalence in causal estimands: 
Scenario 1: The effect is constant across variations in X and S 
(no heterogeneous treatment effects).  
Scenario 2: The same observed data of outcomes are used 
across study arms (reproducibility designs). 
Scenario 3: Participants from an overall target population are 
randomly sampled into both study arms.  
Scenario 4: Treatment effects are additive. Match, reweight, 
and trim units so that study arms share the same distribution of 
unit characteristics X'. 
* Ensure that study arms have the same study and setting 
characteristics S'. 
* Effect generating process must be the same across arms.  
* Treatment effects are constant across any remaining and 
unobserved variations in X and S.  
Scenario 5: Treatment effects are multiplicative. Match, 
reweight, and trim units on all values of X and S.  
* Data generating process for outcomes must be the same across 
arms.  
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distributions with respect to all unit X 
and setting S characteristics.  

A3 The Causal 
Estimand is 
Identified in Both 
Study Arms 

1. The causal estimand of interest 
must be identified for the target 
population of interest in the both 
studies.  
2. The identification assumption 
depends on the research design used 
in each study arm.  

1. Identification assumptions may be met through an RCT or a 
well-implemented quasi-experiment within each study arm (e.g. 
independence, conditional independence, exclusion restriction).  
2. The research design does not need to be the same in both 
research arms; only the identification of treatment effects is 
required.  
* In practice, this assumption is more credible in cases where 
the same valid research design is used in both study arms (e.g. 
RCTs in both study arms). 

A4 Estimator is 
Unbiased in Both 
Study Designs. 

1. Use of unbiased or consistent 
estimator with sufficiently large 
sample sizes.  

1. Assumptions depends on estimator used for estimating effects 
(e.g. linearity assumptions in regression). 
2. Each study arm includes large sample sizes for consistent 
estimators.  

A5 Correct Reporting 
of Estimands, 
Estimators, and 
Estimates 

1. Error in transcribing results into a 
table. 
2. Incorrect reporting of causal 
estimand or estimator.   

1. Pre-registration of results of interest can help prevent 
reporting bias. 
2. Pre-registration of causal estimand of interest   
3. Include multiple investigators to examine the reproducibility 
of results at the analysis and publication phase.  
4. Adopt data transparency policies at the funding and 
publication phases.  
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Table 2. Examples of Replication Design Variants 

  
Prospective 

Designs Within-Study Designs Matched Designs 

  

Shadish et al. 
(2008) 

Chang & 
Li 

(2015) 

Duncan, Engel, Claessens,  
& Dowsett (2014) 

Many Labs 
Project 
(2014) 

Pre-k 
Consensus 

Report (2017) 

  
    Different 

Datasets 
Different 

Subgroups 

Different 
Identification and 

Estimators 
    

A1. Outcome and 
Treatment Condition 
Stability 

✔ ✔ X ✔ ✔ X X 

A2. Equivalence in 
Causal Estimand ✔ ✔ X X ✔ X X 
A3. The Causal 
Estimand is Identified 
in Both Study Arms 

X ✔* ✔* ✔* X ✔ X 

A4. Estimator is 
unbiased in both study 
designs. 

✔ ✔* ✔* ✔* X ✔ X 

A5. Correct reporting 
of results. ✔ X ✔* ✔* ✔* ✔ X 

✔ indicates that the researchers had high confidence that this assumption was met; X Indicate that the replication design was meant 
to test sensitivity of results to this assumption; * indicates that it was unclear whether this assumption was met.  
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